The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose.
نویسندگان
چکیده
Sponges (phylum Porifera) are the phylogenetically oldest metazoan animals, their evolution dating back to 600 million years ago. Here we demonstrate that sponges express ADP-ribosyl cyclase activity, which converts NAD(+) into cyclic ADP-ribose, a potent and universal intracellular Ca(2+) mobilizer. In Axinella polypoides (Demospongiae, Axinellidae), ADP-ribosyl cyclase was activated by temperature increases by means of an abscisic acid-induced, protein kinase A-dependent mechanism. The thermosensor triggering this signaling cascade was a heat-activated cation channel. Elucidation of the complete thermosensing pathway in sponges highlights a number of features conserved in higher organisms: (i) the cation channel thermoreceptor, sensitive to heat, mechanical stress, phosphorylation, and anesthetics, shares all of the functional characteristics of the mammalian heat-activated background K(+) channel responsible for central and peripheral thermosensing; (ii) involvement of the phytohormone abscisic acid and cyclic ADP-ribose as its second messenger is reminiscent of the drought stress signaling pathway in plants. These results suggest an ancient evolutionary origin of this stress-signaling cascade in a common precursor of modern Metazoa and Metaphyta.
منابع مشابه
ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges.
Recently, the thermosensing pathway in sponges (Porifera) was elucidated. The thermosensor triggering this cascade is a heat-activated cation channel, with the phytohormone abscisic acid (ABA), cyclic ADP-ribose (cADPR) and calcium acting as intracellular messengers, similarly to the drought-stress signaling cascade in higher plants. Here, we investigated the functional effects downstream of th...
متن کاملAbscisic acid signaling through cyclic ADP-ribose in hydroid regeneration.
Cyclic ADP-ribose (cADPR) is an intracellular calcium (Ca(2+)(i)) mobilizer involved in fundamental cell functions from protists to higher plants and mammals. Biochemical similarities between the drought-signaling cascade in plants and the temperature-sensing pathway in marine sponges suggest an ancient evolutionary origin of a signaling cascade involving the phytohormone abscisic acid (ABA), c...
متن کاملNitrated cyclic GMP modulates guard cell signaling in Arabidopsis.
Nitric oxide (NO) is a ubiquitous signaling molecule involved in diverse physiological processes, including plant senescence and stomatal closure. The NO and cyclic GMP (cGMP) cascade is the main NO signaling pathway in animals, but whether this pathway operates in plant cells, and the mechanisms of its action, remain unclear. Here, we assessed the possibility that the nitrated cGMP derivative ...
متن کاملThe alphabet soup of plant intracellular signalling: enter cyclic nucleotides.
Recent work reveals a role for cyclic nucleotides as secondary signalling molecules in a variety of signal transduction pathways in plants. Evidence is accumulating that cGMP is involved in signalling during photomorphogenesis and that cADP-ribose triggers the release of sequestered Ca2+ during the response of plant cells to abscisic acid. Though more tentative, cAMP has been proposed as playin...
متن کاملMobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets.
The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 26 شماره
صفحات -
تاریخ انتشار 2001